Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.395
Filtrar
1.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607028

RESUMO

Absorption spectra of red blood cell (RBC) suspensions are investigated in an osmolarity range in the medium from 200 mOsm to 900 mOsm. Three spectral parameters are used to characterize the process of swelling or shrinkage of RBC-the absorbance at 700 nm, the Soret peak height relative to the spectrum background, and the Soret peak wavelength. We show that with an increase in the osmolarity, the absorbance at 700 nm increases and the Soret peak relative height decreases. These changes are related to the changes in the RBC volume and the resulting increase in the hemoglobin intracellular concentration and index of refraction. Confocal microscopy and flow cytometry measurements supported these conclusions. The maximum wavelength of the Soret peak increases with increasing osmolarity due to changes in the oxygenation state of hemoglobin. Using these spectrum parameters, the process of osmosis in RBCs can be followed in real time, but it can also be applied to various processes, leading to changes in the volume and shape of RBCs. Therefore, we conclude that UV-Vis absorption spectrophotometry offers a convenient, easily accessible, and cost-effective method to monitor changes in RBC, which can find applications in the field of drug discovery and diagnostics of RBC and hemoglobin disorders.


Assuntos
Eritrócitos , Hemoglobinas , Pressão Osmótica , Espectrofotometria , Concentração Osmolar
2.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568203

RESUMO

Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.


Assuntos
Osmorregulação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Pressão Osmótica , Proliferação de Células , Glucose
3.
J Physiol ; 602(8): 1623-1636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598430

RESUMO

Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.


Assuntos
Canais de Cálcio , Canais de Potencial de Receptor Transitório , Canais de Cálcio/metabolismo , 60694 , Cálcio/metabolismo , Lisossomos/metabolismo , NADP/metabolismo , Pressão Osmótica , Canais de Potencial de Receptor Transitório/metabolismo
4.
PeerJ ; 12: e16994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426134

RESUMO

Background: Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective: The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods: Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results: During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion: The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.


Assuntos
Fígado , Ratos , Animais , Ratos Wistar , Imagem com Lapso de Tempo , Fígado/diagnóstico por imagem , Osmose , Pressão Osmótica
5.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542282

RESUMO

Gaining insight into osmotic pressure and its biological implications is pivotal for revealing mechanisms underlying numerous fundamental biological processes across scales and will contribute to the biomedical and pharmaceutical fields. This review aims to provide an overview of the current understanding, focusing on two central issues: (i) how to determine theoretically osmotic pressure and (ii) how osmotic pressure affects important biological activities. More specifically, we discuss the representative theoretical equations and models for different solutions, emphasizing their applicability and limitations, and summarize the effect of osmotic pressure on lipid phase separation, cell division, and differentiation, focusing on the mechanisms underlying the osmotic pressure dependence of these biological processes. We highlight that new theory of osmotic pressure applicable for all experimentally feasible temperatures and solute concentrations needs to be developed, and further studies regarding the role of osmotic pressure in other biological processes should also be carried out to improve our comprehensive and in-depth understanding. Moreover, we point out the importance and challenges of developing techniques for the in vivo measurement of osmotic pressure.


Assuntos
Pressão Osmótica , Soluções , Temperatura
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542352

RESUMO

Previously, we found for the first time the participation of osmolytes in adaptation to acidic conditions in three acidophilic fungi. Because trehalose can protect membranes, we hypothesized a relationship between osmolyte and membrane systems in adaptation to stressors. In the mycelium of Phlebiopsis gigantea, the level of osmolytes reaches 8% of the dry mass, while trehalose and arabitol make up 60% and 33% of the sum, respectively. Cold shock does not change the composition of osmolytes, heat shock causes a twofold increase in the trehalose level, and osmotic shock leads to a marked increase in the amount of trehalose and arabitol. Predominance of phospholipids (89% of the sum) and low proportions of sterols and sphingolipids are characteristic features of the membrane lipids' composition. Phosphatidic acids, along with phosphatidylethanolamines and phosphatidylcholines, are the main membrane lipids. The composition of the membrane lipids remains constant under all shocks. The predominance of linoleic (75% of the sum) and palmitic (20%) acids in phospholipids results in a high degree of unsaturation (1.5). Minor fluctuations in the fatty acid composition are observed under all shocks. The results demonstrate that maintaining or increasing the trehalose level provides stability in the membrane lipid composition during adaptation.


Assuntos
Basidiomycota , Lipídeos de Membrana , Polyporales , Álcoois Açúcares , Trealose , Pressão Osmótica , Fosfolipídeos
7.
Commun Biol ; 7(1): 295, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461208

RESUMO

Pseudomonas aeruginosa, a common nosocomial pathogen, relies on siderophores to acquire iron, crucial for its survival in various environments and during host infections. However, understanding the molecular mechanisms of siderophore regulation remains incomplete. In this study, we found that the BfmRS two-component system, previously associated with biofilm formation and quorum sensing, is essential for siderophore regulation under high osmolality stress. Activated BfmR directly bound to the promoter regions of pvd, fpv, and femARI gene clusters, thereby activating their transcription and promoting siderophore production. Subsequent proteomic and phenotypic analyses confirmed that deletion of BfmRS reduces siderophore-related proteins and impairs bacterial survival in iron-deficient conditions. Furthermore, phylogenetic analysis demonstrated the high conservation of the BfmRS system across Pseudomonas species, functional evidences also indicated that BfmR homologues from Pseudomonas putida KT2440 and Pseudomonas sp. MRSN12121 could bind to the promoter regions of key siderophore genes and osmolality-mediated increases in siderophore production were observed. This work illuminates a novel signaling pathway for siderophore regulation and enhances our understanding of siderophore-mediated bacterial interactions and community establishment.


Assuntos
Infecções por Pseudomonas , Sideróforos , Humanos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pressão Osmótica , Filogenia , Proteômica , Ferro/metabolismo , Pseudomonas/metabolismo
8.
ACS Sens ; 9(3): 1592-1601, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477713

RESUMO

The quantitative exploration of cellular osmotic responses and a thorough analysis of osmotic pressure-responsive cellular behaviors are poised to offer novel clinical insights into current research. This underscores a paradigm shift in the long-standing approach of colorimetric measurements triggered by red cell lysis. In this study, we engineered a purpose-driven optofluidic platform to facilitate the goal. Specifically, creating photocurable hydrogel traps surmounts a persistent challenge─optical signal interference from fluid disturbances. This achievement ensures a stable spatial phase of cells and the acquisition of optical signals for accurate osmotic response analysis at the single-cell level. Leveraging a multigradient microfluidic system, we constructed gradient osmotic hydrogel traps and developed an imaging recognition algorithm, empowering comprehensive analysis of cellular behaviors. Notably, this system has successfully and precisely analyzed individual and clustered cellular responses within the osmotic dimension. Prospective clinical testing has further substantiated its feasibility and performance in that it demonstrates an accuracy of 92% in discriminating complete hemolysis values (n = 25) and 100% in identifying initial hemolysis values (n = 25). Foreseeably, this strategy should promise to advance osmotic pressure-related cellular response analysis, benefiting further investigation and diagnosis of related blood diseases, blood quality, drug development, etc.


Assuntos
Hemólise , Hidrogéis , Humanos , Estudos Prospectivos , Pressão Osmótica , Testes Hematológicos
9.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
10.
Mol Plant Pathol ; 25(3): e13436, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460112

RESUMO

While the response of Arabidopsis thaliana to drought, herbivory or fungal infection has been well-examined, the consequences of exposure to a series of such (a)biotic stresses are not well studied. This work reports on the genetic mechanisms underlying the Arabidopsis response to single osmotic stress, and to combinatorial stress, either fungal infection using Botrytis cinerea or herbivory using Pieris rapae caterpillars followed by an osmotic stress treatment. Several small-effect genetic loci associated with rosette dry weight (DW), rosette water content (WC), and the projected rosette leaf area in response to combinatorial stress were mapped using univariate and multi-environment genome-wide association approaches. A single-nucleotide polymorphism (SNP) associated with DROUGHT-INDUCED 19 (DI19) was identified by both approaches, supporting its potential involvement in the response to combinatorial stress. Several SNPs were found to be in linkage disequilibrium with known stress-responsive genes such as PEROXIDASE 34 (PRX34), BASIC LEUCINE ZIPPER 25 (bZIP25), RESISTANCE METHYLATED GENE 1 (RMG1) and WHITE RUST RESISTANCE 4 (WRR4). An antagonistic effect between biotic and osmotic stress was found for prx34 and arf4 mutants, which suggests PRX34 and ARF4 play an important role in the response to the combinatorial stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micoses , Estudo de Associação Genômica Ampla , Arabidopsis/microbiologia , Pressão Osmótica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética
11.
Physiol Plant ; 176(2): e14237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433182

RESUMO

Trehalose, a biological macromolecule with osmotic adjustment properties, plays a crucial role during osmotic stress. As a psammophyte, Ammopiptanthus nanus relies on the accumulation of organic solutes to respond to osmotic stress. We utilized virus-induced gene silencing technology for the first time in the desert shrub A. nanus to confirm the central regulatory role of AnWRKY29 in osmotic stress, as it controls the transcription of AnTPS11 (trehalose-6-phosphate synthase 11). Further investigation has shown that AnHSP90 may interact with AnWRKY29. The AnHSP90 gene is sensitive to osmotic stress, underscoring its pivotal role in orchestrating the response to such adverse conditions. By directly targeting the W-box element within the AnTPS11 promoter, AnWRKY29 effectively enhances the transcriptional activity of AnTPS11, which is facilitated by AnHSP90. This discovery highlights the critical role of AnWRKY29 and AnHSP90 in enabling organisms to adapt to and cope effectively with osmotic stress, which can be a crucial factor in A. nanus survival and overall ecological resilience. Collectively, uncovering the molecular mechanisms underlying the osmotic responses of A. nanus is paramount for comprehending and augmenting the osmotic tolerance mechanisms of psammophyte shrub plants.


Assuntos
Fabaceae , Trealose , Pressão Osmótica , Folhas de Planta/genética , Osmose
12.
Gene ; 913: 148371, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38485034

RESUMO

The intestinal microbiota is increasingly recognized as playing an important role in aquatic animals. To investigate the functional roles and mechanisms of the intestinal microbial genes/enzymes responding to salinity stress or osmotic pressure in fish, metagenomic analysis was carried out to evaluate the response of intestinal microbiota and especially their functional genes/enzymes from freshwater (the control group) to acute high salinity stress (the treatment group) in Nile tilapia. Our results showed that at the microbial community level, the intestinal microbiota in Nile tilapia generally underwent significant changes in diversity after acute high salinity stress. Among them, the shift in the bacterial community (mainly from Actinobacteria to Proteobacteria) dominated and had a large impact, the fungal community showed a very limited response, and other microbiota, such as phages, likely had a negligible response. At the functional level, the intestinal bacteriadecreased the normal physiological demand and processes, such as those of the digestive system and nervous system, but enhanced energy metabolism. Furthermore, at the gene level, some gene biomarkers, such as glutathione S-transferase, myo-inositol-1(or 4)-monophosphatase, glycine betaine/proline transport system permease protein, and some families of carbohydrate-active enzymes (GT4, GT2), were significantly enriched. However, GH15, GH23 and so on were significantly reduced. Exploring the functional details of the intestinal microbial genes/enzymes that respond to salinity stress in Nile tilapia sheds light on the mechanism of action of the intestinal microbiota with respect to the salinity adaptation of fish.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Salinidade , Intestinos , Pressão Osmótica , Estresse Salino
13.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421307

RESUMO

Interactions between notochord and sclerotome are required for normal embryonic spine patterning, but whether the postnatal derivatives of these tissues also require interactions for postnatal intervertebral disc (IVD) growth and maintenance is less established. We report here the comparative analysis of four conditional knockout mice deficient for TonEBP, a transcription factor known to allow cells to adapt to changes in extracellular osmotic pressure, in specific compartments of the IVD. We show that TonEBP deletion in nucleus pulposus (NP) cells does not affect their survival or aggrecan expression, but promoted cell proliferation in the NP and in adjacent vertebral growth plates (GPs). In cartilage end plates/GPs, TonEBP deletion induced cell death, but also structural alterations in the adjacent NP cells and vertebral bodies. Embryonic or postnatal TonEBP loss generated similar IVD changes. In addition to demonstrating the requirement of TonEBP in the different compartments of the IVD, this comparative analysis uncovers the in vivo interdependency of the different IVD compartments during the growth of the postnatal IVD-vertebral units.


Assuntos
Disco Intervertebral , Fatores de Transcrição NFATC , Animais , Camundongos , Regulação da Expressão Gênica , Disco Intervertebral/metabolismo , Camundongos Knockout , Pressão Osmótica , Fatores de Transcrição/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
14.
J Integr Plant Biol ; 66(3): 394-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329193

RESUMO

Drought is one of the most serious abiotic stresses to land plants. Plants sense and respond to drought stress to survive under water deficiency. Scientists have studied how plants sense drought stress, or osmotic stress caused by drought, ever since Charles Darwin, and gradually obtained clues about osmotic stress sensing and signaling in plants. Osmotic stress is a physical stimulus that triggers many physiological changes at the cellular level, including changes in turgor, cell wall stiffness and integrity, membrane tension, and cell fluid volume, and plants may sense some of these stimuli and trigger downstream responses. In this review, we emphasized water potential and movements in organisms, compared putative signal inputs in cell wall-containing and cell wall-free organisms, prospected how plants sense changes in turgor, membrane tension, and cell fluid volume under osmotic stress according to advances in plants, animals, yeasts, and bacteria, summarized multilevel biochemical and physiological signal outputs, such as plasma membrane nanodomain formation, membrane water permeability, root hydrotropism, root halotropism, Casparian strip and suberin lamellae, and finally proposed a hypothesis that osmotic stress responses are likely to be a cocktail of signaling mediated by multiple osmosensors. We also discussed the core scientific questions, provided perspective about the future directions in this field, and highlighted the importance of robust and smart root systems and efficient source-sink allocations for generating future high-yield stress-resistant crops and plants.


Assuntos
Estresse Fisiológico , Água , Pressão Osmótica/fisiologia , Água/metabolismo , Membrana Celular/metabolismo , Produtos Agrícolas/metabolismo , Secas
15.
Elife ; 132024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416131

RESUMO

Experiments involving periodic stimuli shed light on the interplay between hyper-osmotic stress and glucose starvation in yeast cells.


Assuntos
Glucose , Inanição , Humanos , Pressão Osmótica , Saccharomyces cerevisiae
16.
BMC Genomics ; 25(1): 174, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350871

RESUMO

Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties.


Assuntos
Lignina , Medicago sativa , Medicago sativa/genética , Lignina/metabolismo , Pressão Osmótica , Melhoramento Vegetal , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
17.
Physiol Plant ; 176(1): e14202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356406

RESUMO

Drought, a widespread abiotic stressor, exerts a profound impact on agriculture, impeding germination and plant growth, and reducing crop yields. In the present investigation, the osmotolerant rhizobacteria Bacillus casamancensis strain MKS-6 and Bacillus sp. strain MRD-17 were assessed for their effects on molecular processes involved in mustard germination under osmotic stress conditions. Enhancement in germination was evidenced by improved germination percentages, plumule and radicle lengths, and seedling vigor upon rhizobacterial inoculation under no stress and osmotic stress conditions. Under osmotic stress, rhizobacteria stimulated the production of gibberellins and reserve hydrolytic enzymes (lipases, isocitrate lyase, and malate synthase), bolstering germination. Furthermore, these rhizobacteria influenced the plant hormones such as gibberellins and abscisic acid (ABA), as well as signalling pathways, thereby promoting germination under osmotic stress. Reduced proline and glycine betaine accumulation, and down-regulation of transcription factors BjDREB1_2 and BjDREB2 (linked to ABA-independent signalling) in rhizobacteria-inoculated seedlings indicated that bacterial treatment mitigated water deficit stress during germination, independently of these pathways. Hence, the advantageous attributes exhibited by these rhizobacterial strains can be effectively harnessed to alleviate drought-induced stress in mustard crops, potentially through the development of targeted bio-formulations.


Assuntos
Bacillus , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Germinação , Giberelinas/farmacologia , Mostardeira/metabolismo , Pressão Osmótica/fisiologia , Sementes , Plântula/fisiologia , Desidratação
18.
Planta ; 259(3): 68, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337086

RESUMO

MAIN CONCLUSION: Overexpression and loss of function of OsGEX3 reduce seed setting rates and affect pollen fertility in rice. OsGEX3 positively regulates osmotic stress response by regulating ROS scavenging. GEX3 proteins are conserved in plants. AtGEX3 encodes a plasma membrane protein that plays a crucial role in pollen tube guidance. However, the function of its homolog in rice, OsGEX3, has not been determined. Our results demonstrate that OsGEX3 is localized in the plasma membrane and the nucleus as shown by a transiently transformed assay using Nicotiana benthamiana leaves. The up-regulation of OsGEX3 was detected in response to treatments with polyethylene glycol (PEG) 4000, hydrogen peroxide, and abscisic acid (ABA) via RT-qPCR analysis. Interestingly, we observed a significant decline in the seed setting rates of OsGEX3-OE lines and mutants, compared to the wild type. Further investigations reveal that overexpression and loss of function of OsGEX3 affect pollen maturation. TEM observation revealed a significant decrease in the fertile pollen rates of OsGEX3-OE transgenic lines and Osgex3 mutants due to a delay in pollen development at the late vacuolated stage. Overexpression of OsGEX3 improved osmotic stress and oxidative stress tolerance by enhancing reactive oxygen species (ROS) scavenging in rice seedlings, whereas Osgex3 mutants exhibited an opposite phenotype in osmotic stress. These findings highlight the multifunctional roles of OsGEX3 in pollen development and the response to abiotic stress. The functional characterization of OsGEX3 provides a fundamental basis for rice molecular breeding and can facilitate efforts to cultivate drought resistance and yield-related varieties.


Assuntos
Oryza , Espécies Reativas de Oxigênio/metabolismo , Oryza/fisiologia , Pressão Osmótica , Reprodução , Estresse Oxidativo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339162

RESUMO

Globally, women have been adopting oocyte cryopreservation (OC) for fertility preservation for various reasons, such as inevitable gonadotoxic treatment for specific pathologic states and social preferences. While conventional vitrification (C-VIT) has improved the success rate of OC, challenges of possible toxicities of high-concentration cryoprotective agents and osmotic stress persist. To overcome these challenges, we evaluated the ultra-fast vitrification (UF-VIT) method, which reduces the equilibration solution stage exposure time compared to C-VIT by observing mouse oocyte intracellular organelles and embryonic development. Consequently, compared to fresh mouse oocytes, UF-VIT presented significant differences only in endoplasmic reticulum (ER) intensity and mitochondrial (MT) distribution. Meanwhile, C-VIT showed substantial differences in the survival rate, key ER and MT parameters, and embryonic development rate. UF-VIT exhibited considerably fewer negative effects on key MT parameters and resulted in a notably higher blastocyst formation rate than C-VIT. Meiotic spindle (spindle and chromosomes) morphology showed no significant changes between the groups during vitrification/warming (VW), suggesting that VW did not negatively affect the meiotic spindle of the oocytes. In conclusion, UF-VIT seems more effective in OC owing to efficient cytoplasmic water molecule extraction, osmotic stress reduction, and minimization of cell contraction and expansion amplitude, thus compensating for the drawbacks of C-VIT.


Assuntos
Crioprotetores , Vitrificação , Feminino , Animais , Camundongos , Humanos , Crioprotetores/farmacologia , Pressão Osmótica , Criopreservação/métodos , Oócitos
20.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346009

RESUMO

In this paper, we study a pattern formation in the epidermal layer of skin during tumor development and appearance of a binary surface consisting of healthy and cancer cells forming Turing patterns under external osmotic pressure. The basic methodology of introducing the external influences, for example, time-targeted drug therapy or radiation exposure, influence of electromagnetic fields, laser radiation or other tumor-targeting physical influences act differently in different phases of the cell cycle. In some cases, this can lead to a slowdown in the growth of cancer cells, and sometimes vice versa. Therefore, it is of particular interest to choose the right parameters such as starting time of external pressure, its magnitude and duration depending on the cell cycle of developing cancer cells. We propose a biologically inspired model that allows us to simulate the growth of cancer cells under conditions of osmotic pressure. We divide this growth into two phases. The first is characterized by active cell division, and the second by their growth. In this article, we introduce two types of pressure: short-term and long-term, and looked at what this leads to in different phases. We have found an interesting result, that there are some resonant points in time both in the first and second phases, when the introduction of additional pressure leads to the most significant slowdown in the growth of cancer cells.


Assuntos
Desaceleração , Neoplasias , Humanos , Pressão Osmótica , Campos Eletromagnéticos , Aceleração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...